
Functional
ProgrammingXP

The Industrial Experience

karol.ostrovsky@gmail.com

Karol Ostrovský

• M.Sc. — Comenius University, Bratislava

• Ph.D. — Chalmers

• Post-doc — Chalmers

• System Designer — Dfind IT
• On assignment for Ericsson

• Design Architect — Ostrovsky Research Institute

• On assignment for Ericsson

2

The Chalmers Years

• Research in static analysis of concurrent
programming languages

• Type systems

• Protocol analysis

• Main course responsible
• Concurrent Programming Course – was TDA381

• Developed the course between 2005 and 2010

3

The Language & Paradigm Nerd

• Basic

• Pascal

• C/C++

• Scheme

• SmallTalk

• Java

• JR (MPD)

• Haskell

• Erlang

• Prolog

• Python

• Ocaml

• LaTeX

• VAX assembler

• Trilogy

• Ada

• Agda

• ATL

• My own languages

• …

4

What is Programming?

• Manipulation of Structures

5

Compositions

• Functions

map

reduce/fold

6

Structures

• Types

[B]

C

7

My Favourite Slide

The Message from this Course

• Should you forget everything from this
course, please, remember at least this saying:

3PPVT10 – Introduction

Use the right tool for the job.

8

The Message from this Course

Should you forget everything from this course, please, remember at least this saying:

3

PPVT10 – Introduction

Use the right tool for the job.

image1.png

GOTEBORG UNIVERSITY

image2.png

CHALMERS

« Should you forget everything from this
course,please, remember at leat this saying:

Use the right tool for the job. |

Mobile Telecom Network

9

5G

• Soup of buzzwords
• Container-based

• Cloud-native

• State-less

• REST-API

• …

10

Mobile Telecom Standards

• Interoperability is essential

• The Internet Engineering Task Force
• Develops and promotes voluntary Internet

standards

• Request for Comments (RFC)

• 3rd Generation Partnership Project (3GPP)
• Defines telecom standards

11

Packet Core Network

• Ericsson Mobility Management
• SGSN — Servicing GPRS Support Node (2G/3G)

• MME — Mobility Management Entity (4G)

• AMF — Access and Mobility Management Fun. (5G)

• Control signalling

• Admission control, Authentication

• Mobility, roaming

• Payload transport (not in 5G, 4G or 3GDT)

12

SGSN-MME MkVI

• 3 sub-racks

• 21 blades (2+19)

• 2 core PowerPC

• ~114 simultaneously
running processes

• Backplane: 1Gbps

• Capacity: 3MSAU

13

SGSN-MME MkVIII

• 3 sub-racks

• 14 blades (4+12)

• 6 core SMT Intel x86

• ~432 simultaneously
running processes

• Backplane: 1Gbps

• Capacity: 18MSAU

14

SGSN-MME MkX

• 3 sub-racks

• 14 blades (2+12)

• 10 core SMT Intel x86

• ~720 simultaneously
running processes

• Backplane: 10Gbps

• Capacity: 36MSAU

15

Admin VN

External
VN(s)

1-8 per vLC

Internal-1 VN
Internal-2 VN

Cloud-
external
networkBGW BGW

FSB NCB GPB vLC

SGSN-MME virtualised

16

• Mirrors the logical
components of the
native HW design

• Flexible deployment
• Hypervisors

• Cloud Management

Admin VN

External VN(s)

1-8 per vLC

Internal-1 VN Internal-2 VN

Cloud- external network

BGW

BGW

FSB

NCB

GPB

vLC

image5.png

image4.png

image1.png

............

image2.png

image3.png

SGSN-MME — Architecture Sketch

... ...

...

NCB FSB FSB

DP DP DP

APAP AP

NCB

17

SGSN-MME — Use The Right Tool

• Control Plane
• Erlang

• concurrency

• distribution

• fault-tolerance

• DSL: frameworks for protocol implementation

• User Plane
• C: time-critical packet forwarding

18

The Functional Advantage

• Protocol Programming
• 3GPP standards

• Domain experts not software engineers

• DSL
• A “library” of abstractions

• Possible in any language

• Often easier in a functional language

• A set of combinator “glues”
• Considerably more powerful in a functional language

19

Typical Concurrency Patterns 1

• Barrier
• Multi-stage barrier

• Start-up of each AP boards internally

• Middleware synchronisation across all boards

• In service software upgrade

• Value-carrying negotiable
• One value producer

• Multiple subscribers

20

Typical Concurrency Patterns 2

46PPVT10 – Message Passing

Architecture

• N+1 pipeline channels
• One shared output channel

f i l t er 1 f i l t er 2 f i l t er N

nums

eatout putpr i nt

21

Si
ev

e
o

f E
ra

to
st

he
ne

s

46

PPVT10 – Message Passing

Architecture

N+1 pipeline channels

One shared output channel

filter1

filter2

filterN

nums

eat

output

print

46

image1.png

GOTEBORG UNIVERSITY

image2.png

CHALMERS

Pipeline of Processes

loggingLOG

AP_1 AP_2 AP_N

NCB

22

Typical Concurrency Patterns 3

• One mobile — one process (replicated worker)
• Isolation

• Synchronisation only with resources

• Central resources
• Resource allocator

• Master/controller – slave/worker

• Transaction handler

• (Parallel and Distributed) Iterator

23

Distribution

• One mobile — one process
• Evenly distribute all phones over all blades

• Replicate data for fault-tolerance

• Central resources
• Run on the controller-blade

• Replicate to all the worker-blades

• Can we survive without a controller?

24

Fault-tolerance

• SGSN-MME requirement: 99.999% availability

• Hardware
• Faulty blades are automatically taken out of service

• Mobile phones redistributed

• Software
• Fail fast — offensive programming

• Recovery strategy

25

Fault-tolerance — Software

• Phone process crash should never affect others
• Automatic memory handling

• Process monitoring

• Recovery Strategy — Escalation Hierarchy
• Restart the phone process

• Restart one blade

• Restart the whole node

26

FP Patterns — Monads

• Good
• Keeps pure and side-effecting computations apart

• Good separation of concerns

• Improved compositionality

• Possible performance gain

• Gather writes together and write to DB once —
amortise the cost of transactions:

• 1 item write costs 10

• 10 items write is not 100 but only 20!

27

FP Patterns — Monads

• Bad
• In rapid prototyping it can present a big hurdle to

jump over

• So, it is good that Erlang does not have static types

• Lazy evaluation is more complicated in the
presence of side-effects especially inter-process
communication

28

OO-Design Patterns

• Factory method
• Improve memory sharing

• Object pool
• Bounded parallelisation of algorithms — thread pool

• Overload protection

• Iterator
• Perform operations on all phones

29

What they do not teach you

• Software lives long
• Especially telecom systems (decades)

• Banking systems live even longer (think Cobol)

• People change

• Organisations change

• Hardware changes

• Requirements change

• Documentation often does not change

30

Software Maintenance

• The developer’s challenge
• Write simple (readable) and efficient code:

1. Write a straightforward and working solution first

2. Optimise later (or even better skip this step)

• Think smart but do not over-optimise
• Optimisations complicate maintenance

• The code is often the only reliable document
• Types can be very good documentation

31

Synthesis and Analysis

• Emphasis on synthesis in education
• Software development from scratch

• Industrial systems often have a legacy
• Software development by further iteration

• Refactoring

• Code review

• Software maintenance

• Need for both analytical and synthesizing thinking

32

Synthesis and Analysis

• Roughly 30% of manpower is spent on testing
• Analytical work

• Do you like to break a system?

• But testing can also be “synthesizing”
• Testing frameworks

• QuickCheck

• SGSN-MME has its own

• Formally prove the system correctness?

33

Erlang in Practice — Pros

• Well suited for
• Control handling of telecom traffic

• Application layer (OSI model) applications
• Web servers, etc.

• Domain Specific Language — framework
• Test scripting

• Reasonably high-level (compared to C)
• Good for software maintenance

34

Erlang in Practice — Pros

• Dynamic typing
• Aids rapid prototyping

• OTP — includes useful building blocks
• Supervisor

• Generic server

• Finite state machine

• Unit test

• Soon?: build and package system

35

Erlang in Practice — Cons

• Hard to find good Erlang programmers (?)
• Management b......t

• Long live Chalmers/GU

• A bit too low-level language
• Given current HW limitations one must sometimes

optimise to the point where the code is not
portable (with the same performance)

• Raise the abstraction and provide a customisable
compiler, VM (Elixir?)

36

Erlang in Practice — Cons

• Where is the type system?
• A static type system of Haskell-nature would

probably be a hindrance

• But good static analysis tools are desperately
needed

• Types are an excellent form of documentation

37

More Than True

54PPVT10 – Introduction

Sayings

• The greatest performance improvement of all
is when a system goes from not-working to
working

• The only thing worse than a problem that
happens all the time is a problem that doesn't
happen all the time

38

54

PPVT10 – Introduction

Sayings

The greatest performance improvement of all is when a system goes from not-working to working

The only thing worse than a problem that happens all the time is a problem that doesn't happen all the time

image1.png

GOTEBORG UNIVERSITY

image2.png

CHALMERS

+ The greatest performance improvement of all
s when asystem goes from not-working to
working

« The only thing worse than 3 problem that
happens al the time is a problem that doesn't
happen al the time

Functional Programming

• Widespread use
• Embedded (cars, satellites, etc.), web-apps, games,

banks, big-data, …

• Abstractions and compositionality

• Productivity gains

39

The Industrial Experience

• It is more difficult that you expect, but
• Usually not in complexity but size

• Good methodical approach helps

• Lateral thinking is an asset
• Learn many programming paradigms

• Learn many programming languages

40

	Functional ProgrammingXP
	Karol Ostrovský
	The Chalmers Years
	The Language & Paradigm Nerd
	What is Programming?
	Compositions
	Structures
	My Favourite Slide
	Mobile Telecom Network
	5G
	Mobile Telecom Standards
	Packet Core Network
	SGSN-MME MkVI
	SGSN-MME MkVIII
	SGSN-MME MkX
	SGSN-MME virtualised
	SGSN-MME — Architecture Sketch
	SGSN-MME — Use The Right Tool
	The Functional Advantage
	Typical Concurrency Patterns 1
	Typical Concurrency Patterns 2
	Pipeline of Processes
	Typical Concurrency Patterns 3
	Distribution
	Fault-tolerance
	Fault-tolerance — Software
	FP Patterns — Monads
	FP Patterns — Monads
	OO-Design Patterns
	What they do not teach you
	Software Maintenance
	Synthesis and Analysis
	Synthesis and Analysis
	Erlang in Practice — Pros
	Erlang in Practice — Pros
	Erlang in Practice — Cons
	Erlang in Practice — Cons
	More Than True
	Functional Programming
	The Industrial Experience

